Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds.

نویسندگان

  • M Gallardo
  • M del M Delgado
  • I M Sánchez-Calle
  • A J Matilla
چکیده

The effect of supraoptimal temperatures (30 degrees C, 35 degrees C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25 degrees C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds.

The thermoinhibition at 35 and 32 degrees C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35 degrees C was inhibited by C...

متن کامل

Enhanced Ethylene Emissions from Red and Norway

Acidic cloudwater is believed to cause needle injury and to decrease winter hardiness in conifers. During simulations of these adverse conditions, rates of ethylene emissions from and levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in both red and Norway spruce needles increased as a result of treatment with acidic mists but amounts of 1-malonyl(amino)cyclopropane-1carboxylic acid remaine...

متن کامل

Potamogeton pectinatus Is Constitutively Incapable of Synthesizing Ethylene and Lacks 1-Aminocyclopropane-1-Carboxylic Acid Oxidase.

A highly sensitive laser-driven photoacoustic detector responsive to [less than or equal to]2.1 nmol m-3 ethylene (50 parts per trillion [v/v]) was used for ethylene analysis. Dark-grown plants of Potamogeton pectinatus L. growing from small tubers made no ethylene. Exposure of shoots to white light, wounding, submergence in water followed by desubmergence, partial oxygen shortage, indole aceti...

متن کامل

Ethylene Production by Root Nodules and Effect of Ethylene on Nodulation in Glycine max.

Nodulated soybean roots produced more ethylene and contained more 1-aminocyclopropane-1-carboxylic acid than uninoculated roots. Nodules produced more ethylene and contained more 1-aminocyclopropane-1-carboxylic acid per gram of material than roots. Almost all of the ethylene produced by the nodules was produced by the plant fractions of the nodules. Ethylene, at physiological concentrations, d...

متن کامل

Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 1991